

AI-Assisted Coding: Challenges and Solutions

1. Security Risks
Issue: Secrets or API keys are ending up in frontend code, exposing vulnerabilities.

🧩 What to look out for:

● Keys in .js, .ts, .html, or other frontend-accessible files.
● AI inserting sensitive values directly into config or fetch calls.

🧭 PM Instructions:

● Set a policy: No secrets should ever exist in the frontend. Use environment variables or
secret managers.

● Integrate a vault: Tools like HashiCorp Vault, Azure Key Vault, or AWS Secrets Manager
should be used.

● Code review step: During pull requests, include a mandatory secret-scan step
(automated or manual).

● AI prompt hygiene: Ask devs to instruct the AI: “Do not insert actual secrets. Use
placeholders.”

 ✅ Questions to ask the team:

● Have all secrets been externalized to a secure vault or .env?
● Are devs using AI prompts that reinforce secret management best practices?
● Are there automated linters or secret scanners (e.g., GitGuardian)?

2. Code Hallucinations
Issue: AI makes major, unrelated changes to files when asked to do small edits.

🧩 What to look out for:

● Unrequested rewrites or reformatting.
● Subtle logic bugs introduced by hallucinated refactors.

🧭 PM Instructions:

● Use Git wisely: Instruct the team to use git diff before and after every AI interaction.
○ This may be overkill as most no-code have auto restore point but use these if

needed.
● Small scope tasks: Encourage “micro-prompts” (e.g., “Refactor this function” instead of

“Fix the page”).
● Rollback safety: Ensure local versioning (like Git stash or branch clones) is practiced.
● Code review mindset: Encourage team to never trust AI blindly — always validate with

tests or logic review.

1

✅ Questions to ask the team:

● Are you reviewing diffs after AI modifications?
● Was this prompt specific enough to avoid scope creep?
● Is test coverage in place to detect AI-introduced regressions?

3. Lack of Structural Clarity
Issue: AI mixes frontend concerns with backend logic, violating separation of concerns.

🧩 What to look out for:

● Business logic leaking into frontend components.
● Backend code invoking UI elements, or vice versa.

🧭 PM Instructions:
● Architecture mapping: Make sure a clear folder and component structure is documented.
● Prompt suggestions: “Keep this logic server-side” or “Frontend only handles

presentation.”
● Review meetings: Include a structure check in sprint demos or pull request reviews.

✅ Questions to ask the team:
● Is this logic properly scoped to the backend?
● Does the folder structure reflect frontend/backend separation?
● Are your prompts reinforcing architectural constraints?

4. Library Overload

Issue: AI introduces unnecessary third-party libraries, bloating the project and adding
maintenance overhead.

🧩 What to look out for:

● New package.json dependencies with unclear purpose.
● Libraries used for trivial tasks (e.g., moment.js for formatting a date).

🧭 PM Instructions:
● Define a baseline: Maintain a list of approved or recommended libraries.
● Review dependency diffs: For every PR, check for added packages and justify each.
● Prompt discipline: Instruct devs to ask: “Use built-in methods unless absolutely needed.”

✅ Questions to ask the team:

● Did we already have a solution in the codebase?
● Is the new library well-maintained and widely used?
● Could this be done with native functionality?

2

5. Repetitive and Bloated Code

Issue: AI duplicates patterns instead of abstracting reusable components.

🧩 What to look out for:

● Repetition of the same HTML/TSX/JS blocks.
● Identical logic blocks not refactored into functions.

🧭 PM Instructions:

● Component-first mindset: Encourage modular design in all tasks.
● Design systems: Promote shared UI kits or logic utilities.
● Refactoring reviews: Include a checklist item for “redundancy reduction.”

✅ Questions to ask the team:

● Can this block be refactored into a shared component?
● Do you have reusable utility functions for this logic?
● Are components stored in a shared, organized structure?

3

	AI-Assisted Coding: Challenges and Solutions

